

Fig. 5. Projection of the structure along the b axis.

References

Cannas, M. \& Marongiu, G. (1967). Z. Kristallogr. 124, 143. Cannas, M. \& Marongiu, G. (1968). Z. Kristallogr. 127, 388.
Helm, D. van der (1961). Structure Factor Program and Least-Squares Sum Maker. The Institute for Cancer Research, Philadelphia, Pa.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. A Fortran ThermalEllipsoid Plot Program for Crystal Structure Illustrations, ORNL-3794, Revised. Oak Ridge National Laboratory Oak Ridge, Tennessee.
Maggioni, P., Gaudiano, G. \& Bravo, P. (1966). Gazz. chim. ital. 96, 443.

Pauling, L. (1960). The Nature of the Chemical Bond, 3rd edition. p.235. Ithaca: Cornell Univ. Press.
Quilico, A., Gaudiano, G. \& Ricca, A. (1957). Gazz. chim. ital. 87, 638.
Quilico, A., Gaudiano, G. \& Merlini, L. (1958). Tetrahedron, 2, 359.
Rae, A. D. (1965). Acta Cryst. 19, 683.
Ricca, A. \& Gaudiano, G. (1959). R. C. Accad. Lincei, 26, 240.
Schomaker, V., Waser, J., Marsh, R. E. \& Bergman, G. (1959). Acta Cryst. 12, 600.

Speroni, G. (1962). In The Chemistry of Heterocyclic Compounds. 17th Vol. Five and Six-Membered Compounds With Nitrogen and Oxygen. New York: Interscience.

Acta Cryst. (1969). B25, 737

The Molecular Structure of $\mathrm{Fe}(\mathbf{C O})_{s}$ in the Gas Phase

By B. Beagley and D.W.J. Cruickshank
Department of Chemistry, University of Manchester Institute of Science and Technology, Sackville Street, Manchester 1, England

and ${ }^{\text {n }}$ P. M. Pinder, A. G. Robiette and G. M. Sheldrick
Department of Physical Chemistry, Lensfield Road, Cambridge, England

(Received 30 May 1968)
New electron diffraction intensity data have been collected for gaseous iron pentacarbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$. Full-matrix least-squares refinement confirms the trigonal bipyramid molecular structure found in earlier studies. The structural parameters found are: C-O (mean) $1 \cdot 145 \pm 0.003 \AA, \mathrm{Fe}-\mathrm{C}$ (equatorial) $1.833 \pm 0.004 \AA$, Fe-C (axial) $1.806 \pm 0.005 \AA$, Fe-C (mean) $1.822 \pm 0.003 \AA$. The effects of different weighting schemes, different magnitudes of shrinkage corrections and the use of assumed vibrational amplitudes have been investigated in detail. The results are compared with a parallel study by Almenningen, Haaland \& Wahl.

Introduction

The crystal structure of iron pentacarbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$, has been investigated by A.W.Hanson (1962), and further refined in an alternative space group by Donohue \& Caron (1964). These studies showed that the molecular structure is, within experimental error, a trigonal bipyramid, with the carbon atoms of the car-
bonyl groups bonded to the iron atom. No significant difference between the axial and equatorial $\mathrm{Fe}-\mathrm{C}$ bond lengths was found. Davis \& Hanson (1965, 1967) have studied iron pentacarbonyl in the gas phase by electron diffraction and concluded that the equatorial $\mathrm{Fe}-\mathrm{C}$ bond length is longer than the axial $\mathrm{Fe}-\mathrm{C}$ bond length by $0 \cdot 049 \pm 0.020 \AA$. This work has been the subject of comment by Donohue \& Caron $(1966,1967)$,
who point out that the use of assumed vibrational amplitudes may have prejudiced the refinements of Davis \& Hanson. They further question whether the electron diffraction experiment is capable of providing a reliable estimate of this small difference in bond lengths. We have now collected new electron diffraction data for $\mathrm{Fe}(\mathrm{CO})_{s}$. Because determination of the $\mathrm{Fe}-\mathrm{C}$ bond length difference is certainly difficult with present experimental techniques we have considered in detail the effects of different weighting schemes and different refinement methods on this parameter. After this work was substantially complete, we received the results of a further study carried out at the University of Oslo (Almenningen, Haaland \& Wahl, 1968, hereafter referred to as AHW). A comparison between the two sets of results is of interest in establishing the reproducibility of independent gas-phase diffraction studies between different laboratories.

Experimental

A small, highly pure sample of $\mathrm{Fe}(\mathrm{CO})_{5}$ was donated to us by Dr B.J.Aylett. It was fractionally distilled in vacuo before use. Examination by infrared spectroscopy and mass spectrometry failed to reveal the presence of any impurities.
Photographs were taken on Ilford N. 60 plates in the Balzers KD.G2 gas diffraction apparatus at the University of Manchester Institute of Science and Technology, using 46 kV electrons, and the photographic intensities were transferred to punched paper tape using an automated Joyce-Loebl microdensitometer (Beagley, Clark \& Hewitt, 1968). The electron wavelength used was $0 \cdot 05580_{3} \AA$ with an estimated uncertainty of $0.00003_{0} \AA$. The wavelengths calculated by direct measurement of the voltage and by observation of the T1C1 powder diffraction pattern agreed within this uncertainty. Nozzle-to-plate distances of 100 cm , 50 cm and 25 cm were employed, corresponding to s ranges of approximately 1 to 7,2 to 14 and 8 to $30 \AA^{-1}$ respectively.
Data reduction and all subsequent calculations were performed using the Cambridge University Titan computer. For each camera distance, centring of individual traces, averaging of all traces and interpolation in even intervals in s, and corrections for emulsion response, sector profile and plate planarity were performed by a new program written by two of us (A.G.R. and G.M.S.). Six or more diameters, i.e. at least twelve radial traces, were incorporated in the averaged intensities for each camera distance. The s intervals used were $0.025 \AA^{-1}$ for 100 cm plates, $0.050 \AA^{-1}$ for 50 cm plates and $0 \cdot 100 \AA^{-1}$ for 25 cm plates. From the 'uphill curve', $\left[s^{4} I_{T}(s)\right]$ our procedure has already been described (Beagley, Robiette \& Sheldrick, 1968a). Each set of data is scaled to the calculated coherent atomic scattering, after which the data are inspected, and final adjustments to the background and selection of weight functions are performed. Scattering amplitudes and
phases were taken from the calculations of Cox \& Bonham (1967), interpolated for 46 kV electrons.

Least-squares refinement

A description of our full-matrix least-squares program has been reported elsewhere (Beagley, Robiette \& Sheldrick, $1968 a$). The quantity minimized in the refinement is $\mathbf{U}^{\prime} \mathbf{w U} / \mathbf{I}^{\prime} \mathbf{w I}$, where \mathbf{w} is the off-diagonal weight matrix described below, I the vector of observed intensities $I^{\text {obs }}$ and U the vector ($I^{\text {obs }}-I^{\text {calc }}$). The expression employed to calculate the theoretical molecular intensity is

$$
\begin{aligned}
& I^{\text {calc }=k_{t}} \sum_{i \neq j} \sum_{i j}\left|f_{i}\right|\left|f_{j}\right| \cos \left(\eta_{i}-\eta_{j}\right) \\
& \times \sin \left[s\left(r_{i j}-\kappa_{i j} s^{2}\right)\right] \exp \left(-u_{i j}^{2} s^{2} / 2\right) / r_{i j} s,
\end{aligned}
$$

with a separate scale factor k_{t} for each camera distance t. The $r_{i j}$ are here $r_{g}(1)$ (Bartell, 1955). Anharmonicities $\kappa_{i j}$ were derived from the relation $\kappa_{i j}=a u_{i j}^{4} / 6$. The asymmetry parameter a was fixed but the dependence on $u_{i j}$ explicitly included. a was set equal to $1 \cdot 5 \AA^{-1}$ for $\mathrm{C}-\mathrm{O}$ bonds, $2 \AA^{-1}$ for $\mathrm{Fe}-\mathrm{C}$ bonds and zero for non-bonded distances. Refinement was continued until all shifts were less than one tenth of a standard deviation, except where otherwise mentioned. At this stage most of the shifts were less than $10^{-4} \AA$.

Weighting schemes

The problem of weighting electron diffraction data in least-squares refinement has no obvious solution. There is general agreement that the data close to the centre of the plate and data at the outer edge of the plate should be weighted down; the former because of uncertainties in the sector profile and in calculated scattering factors at low scattering angles, and the latter because of extraneous scattering from the walls of the chamber and from other parts of the apparatus. Empirical adjustments to the background are also likely to be uncertain at both extremes of each data set. We use (Beagley, Robiette \& Sheldrick, 1968a) a trapezoidal function, choosing for each camera distance t two points s_{1} and s_{2}. The diagonal weight matrix elements are then

$$
\begin{array}{ll}
w_{k k}=W_{t}\left(s_{k}-s_{\min }\right) /\left(s_{1}-s_{\min }\right) & s_{\min } \leq s_{k} \leq s_{1} ; \\
w_{k k}=W_{t} & s_{1} \leq s_{k} \leq s_{2} ; \\
w_{k k}=W_{t}\left(s_{\max }-s_{k}\right) /\left(s_{\max }-s_{2}\right) & s_{2} \leq s_{k} \leq s_{\max } .
\end{array}
$$

The off-diagonal matrix elements are given by

$$
\begin{array}{ll}
w_{k l}=0, & l \neq k \pm 1 \\
w_{k l}=-0 \cdot 5\left(w_{k k}+w_{l l}\right)(p / h)_{t}, & l=k \pm 1
\end{array}
$$

where $(p / h)_{t}$ is found for each camera distance t by the method of Murata \& Morino (1966) [see also Beagley, Robiette \& Sheldrick (1968b)]. The problem in our treatment arises in choosing the W_{t}, that is the relative total weights to be assigned to batches of data obtained at different camera distances.

Parameters which are well determined, i.e. interatomic distances and amplitudes which correspond to well resolved peaks in the radial distribution curve, are not usually sensitive to the weighting scheme. In the present case, however, the difference between equatorial and axial $\mathrm{Fe}-\mathrm{C}$ bond lengths could well be affected by the choice of weights and we have therefore carried out refinements under weighting schemes which differ widely.

We have employed four different weighting schemes. In the first (I) $W_{1}(100 \mathrm{~cm})=W_{2}(50 \mathrm{~cm})=W_{3}(25 \mathrm{~cm})=1$. This means that each individual data point is equally weighted (except for down-weighting at the inner and outer parts of a data set). In the second (II) $W_{1}=0 \cdot 25$ $W_{2}=0 \cdot 50, W_{3}=1 \cdot 00$. This corresponds to even weighting of a single s unit at each camera distance, since there are twice as many data points per s unit at 100 cm ($4 s=0.025 \AA^{-1}$) as at $50 \mathrm{~cm}\left(\Delta s=0.05 \AA^{-1}\right)$ and four times as many as at $25 \mathrm{~cm}\left(\Delta s=0 \cdot 10 \AA^{-1}\right)$. In the third and fourth weighting schemes (III and IV) the W_{t} are allowed to vary from cycle to cycle in a manner determined by an analysis of variance.

This analysis provides $\left(\mathbf{U}^{\prime} \mathbf{w}\right)_{t}$ and $\left(\mathbf{U}^{\prime} \mathbf{w} \mathbf{U} / \mathbf{I}^{\prime} \mathbf{w}\right)_{t}$ for each camera distance separately. The two weighting schemes dependent on this analysis either (III) aim to make $W_{t}\left(\mathbf{U}^{\prime} \mathbf{w U} / \mathbf{I}^{\prime} \mathbf{w I}\right)_{t}$ the same for all camera distances, i.e. W_{t} for the next cycle is taken inversely proportional to ($\left.\mathbf{U} \mathbf{\prime} \mathbf{w} \mathbf{U} / \mathbf{I}^{\prime} \mathbf{w I}\right)_{t}$; or (IV) aim to make $\left(\mathbf{U}^{\prime} \mathbf{w} \mathbf{U} / N\right)_{t}$ the same for all camera distances. N_{t} here is the 'effective' number of data points for camera t, i.e. $N_{t}=\left(\sum_{k} w_{k} k\right)_{t} / W_{t}$.

Molecular model

The molecular point group $62 m\left(D_{3 h}\right)$ was assumed, with a trigonal bipyramidal arrangement of carbonyl groups about the iron atom. The three equatorial $\mathrm{C}-\mathrm{O}$ groups are numbered $\mathrm{C}(1)-\mathrm{O}(1), \mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right), \mathrm{C}\left(1^{\prime \prime}\right)-$

Fig. 1. Observed and weighted difference intensities, camera distance 100 cm .
$\mathrm{O}\left(1^{\prime \prime}\right)$, and the two axial groups $\mathrm{C}(2)-\mathrm{O}(2), \mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$. All bonded ($\mathrm{C}-\mathrm{O}$) distances were assumed equal. With this restriction the geometrical parameters can be taken as $\mathrm{C}-\mathrm{O}$ (mean), $\mathrm{Fe}-\mathrm{C}($ mean $)$ and $[\mathrm{Fe}-\mathrm{C}(1)]-[\mathrm{Fe}-\mathrm{C}(2)]=$ Δ. This enables the estimated standard deviation in Δ to be conveniently obtained. The bond lengths $\mathrm{Fe}-\mathrm{C}(1)$, $\mathrm{Fe}-\mathrm{C}(2)$ and the twelve different non-bonded interatomic distances were calculated from these three parameters in terms of a rigid molecule: the calculated shrinkage effects of Brunvoll (1967) were then subtracted and the resulting values taken to be the $r_{g}(1)$ required in the theoretical intensity expression. Ideally the rigid-body calculations should be carried out in terms of $r_{g}(0)$, as AHW have pointed out. We were prompted by their work to carry out a refinement in which bonded distances were first converted to $r_{g}(0)$ by the addition of $u_{i j}^{2} / r_{i j}$. The non-bonded distances were then calculated as $r_{g}(0)$, and converted back to $r_{g}(1)$ by subtraction of shrinkage and $u_{i j}^{2} / r_{i j}$. AHW found that the effect on the final parameters was very small but that their fit became worse; we found small changes in the parameters, although our fit was slightly improved. As amplitudes are seriously affected by systematic errors in the intensity measurements, we believe that the use of $r_{g}(1)$ values in the geometrical computations is in general to be preferred.
If Δ is small, three pairs of distances should give rise to unresolved peaks in the radial distribution $P(r) / r$, with the consequence that the amplitudes involved cannot be independently refined. Thus we have applied the following three constraints:
(a) With $\mathrm{Fe}-\mathrm{C}(1)=r_{1}, \mathrm{Fe}-\mathrm{C}(2)=r_{2}$, $u_{1} / u_{2}=\left[\left(r_{1}-d\right) /\left(r_{2}-d\right)\right]^{3 / 4}=\alpha$.
This constraint is derived from Badger's rule (Bartell \& Carroll, 1965; Hansen \& Bartell, 1965) and d is a Badger's rule constant set equal to $0.985 \AA$.
(b) $u[\mathrm{Fe}-\mathrm{O}(1)]=\alpha \cdot u[\mathrm{Fe}-\mathrm{O}(2)]$
with the same value of α. The calculated values of Brunvoll (1967) show that such a ratio is reasonable.
(c) $u[\mathrm{C}(1)-\mathrm{O}(2)]=u[\mathrm{C}(2)-\mathrm{O}(1)]$.

While there are in principle fifteen independent amplitudes of vibration, these constraints restrict the refinable amplitude parameters to twelve.

Results

The separate molecular intensity curves for the 100 cm , 50 cm , and 25 cm camera distances are shown in Figs. 1, 2 and 3. (The uphill curves from which these intensities were derived are available from the authors on request.) The weighted difference intensities plotted below each curve are $w_{k k}^{1 / 2}\left(I_{k}^{\text {obs }}-I_{k}^{\text {calc }}\right)$.
After every refinement a composite intensity curve was constructed from the three weighted experimental curves, each divided by its least-squares scale factor k_{t}, with the addition of theoretical intensity data to extend
the lower s limit to zero (Beagley, Robiette \& Sheldrick, 1968a). Radial distribution curves $P(r) / r$ were obtained from the composite intensity data by multiplication by $s . \exp \left(-0.0025 s^{2}\right) /\left|f_{o}\right|\left|f_{c}\right|$ followed by Fourier inversion. The $P(r) / r$ difference plots contained no prominent features. An example is given in Fig.4. Fig. 4 and the difference plots in Figs. 1 to 3 result from refinements under weighting scheme I.

Weighting scheme I

Most of the refinements were carried out under weighting scheme I. All twelve amplitude parameters could be refined simultaneously with the three scale factors and the three geometrical parameters. The bonded distances and their amplitudes are given in Table 1, column (a). Non-bonded distances and their amplitudes are given in Table 3, cols. (a) and (b). All uncertainties quoted in these tables are standard deviations estimated in the least-squares analysis. Included in Table 1 are the 'generalized' and 'diagonal' R values defined as

$$
R_{G}=\left(\mathbf{U}^{\prime} \mathbf{w} \mathbf{U} / \mathbf{I}^{\prime} \mathbf{w}\right)^{1 / 2}, R_{D}=\left(\sum_{k} w_{k k} U_{k}^{2} / \sum_{k} w_{k k} I_{k}^{2}\right)^{1 / 2} .
$$

Several refinements were carried out for fixed values of Δ in the range -0.05 to $0.10 \AA$. A plot of R_{G} against Δ shows a well defined and symmetrical minimum at $\Delta=0.028 \AA$. From the R index ratio distributions (Hamilton, 1965) the 99.5% confidence interval $0.013 \leq \Delta \leq 0.042 \AA$ can be established, showing that the marginal standard deviation estimated for Δ in the general refinement $\left(0.004_{6} \AA\right)$ is realistic.

Table 1 contains the results of some refinements carried out using weighting scheme I under slightly different conditions. These are: column (b), the Badger's rule constraint was replaced by the conditions $u[\mathrm{Fe}-\mathrm{C}(1)]=u[\mathrm{Fe}-\mathrm{C}(2)]$ and $u[\mathrm{Fe}-\mathrm{O}(1)]=u[\mathrm{Fe}-\mathrm{O}(2)]$; column (c), bonded amplitudes were fixed at the values of Brunvoll (1967) and non-bonded amplitudes refined; column (d), bonded amplitudes were refined and non-bonded amplitudes fixed at Brunvoll's (1967) values; column (f), all amplitudes were refined but no shrinkage corrections were applied.

After these refinements were substantially completed we received a communication on the refinements carried out in Oslo by AHW. These results were similar to ours but with a somewhat smaller value of Δ, $0.012 \pm 0.006 \AA$. A refinement was therefore carried out on our data with the non-bonded amplitudes fixed at AHW's values: this led to a value of $\Delta=0.013_{5}$ $\pm 0 \cdot 004_{7} \AA$ [Table 1, col. (e)]. When the non-bonded amplitudes were allowed to refine, however, the structure slowly converged to that given in Table 1, col. (a). At this stage the $r_{g}(0)$ calculation referred to under the Molecular model heading above was performed. The results are in Table 1, col. (h).

The molecular parameters obtained for a model refined as in Table 1, col. (a) but without shrinkage corrections are given in Table 1, col. (f). In this refine-
ment one non-bonded amplitude had to be fixed $\left(u\left[C(2) \cdots C\left(2^{\prime}\right)\right]=0.2986 \AA\right)$. The R values are much worse than those in Table 1, col. (a). Δ becomes 0.032_{9} $\pm 0.004_{7} \AA$. It is clear that when the amplitudes are all allowed to refine freely only one factor, the application of shrinkage corrections, affects Δ appreciably. This suggested the possibility of applying shrinkage corrections greater than the calculated values, especially as the diagonal force field used by Brunvoll (1967) is inevitably approximate. The relative magnitudes of the calculated shrinkages for each non-bonded distance were maintained, but they were multiplied by a numerical factor which was allowed to vary in the refinement. This refinement [Table 1, col. (g)] converged satisfactorily, but the final value of the shrinkage factor, $2 \cdot 4_{8} \pm 0 \cdot 2_{4}$, is probably too high to be physically realistic. The corresponding value of $\Delta, 0.015 \pm 0.005 \AA$,

Fig.2. Observed and weighted difference intensities, camera distance 50 cm .

Fig.3. Observed and weighted difference intensities, camera distance 25 cm .
does show the decrease expected from a consideration of the results in Table 1, cols. (a) and (f).

Weighting scheme II

Under weighting scheme II the refinement converged to the values given in Table 2, col. (a). Table 3 compares the non-bonded amplitudes of weighting schemes I, II, III and IV with those of AHW and Brunvoll (1967). Under all weighting schemes except I the three non-bonded amplitudes which are least well-defined $u\left[\mathrm{C}(1) \cdots \mathrm{C}\left(1^{\prime}\right)\right], u\left[\mathrm{C}(2) \cdots \mathrm{C}\left(2^{\prime}\right)\right]$ and $u[\mathrm{O}(1) \cdots \mathrm{O}(2)]-$ did not converge very satisfactorily. Even when all

Fig.4. Observed and difference radial distribution functions $P(r) / r$: artificial temperature factor $\exp \left(-0.0025 s^{2}\right)$.
other parameters had converged these three amplitudes continued to oscillate with shifts of the order of a standard deviation. The constraint of these parameters at the values of Table 3, col. (b) in no case resulted in a rise in the generalized R index significant at the 1% confidence level (Hamilton, 1965). The value of Δ using weighting scheme II is $0.022 \pm 0.005 \AA$.

Weighting schemes III and IV

The analysis of variance of our data is given in Table 5. The R_{G} are very similar for the 100 cm data and the 50 cm data, and both are higher than R_{G} for the 25 cm data. Under scheme III with the W_{t} scaled so that $W_{3}(25 \mathrm{~cm})=1, W_{1}$ and W_{2} received values in the range 0.6 to 0.7 , varying slightly each cycle as the structure altered. The final parameter values, given in Table 2, col. (b), are reasonable: Δ refined to 0.027 $\pm 0.005 \AA$.
The criterion that the quantity ($\mathbf{U}^{\prime} \mathbf{w U} / N$) be made equal for all camera distances resulted in weight factors of 5.3 for the 100 cm data and 0.4 for the 50 cm data relative to a weight factor of 1.0 for the 25 cm data. Although, again, the structure [Table 2, col. (c)] is reasonable, these weights are probably too strongly affected by the approximate off-diagonal parameters in the weight matrix to be realistic. The use of $\left(\mathbf{U}^{\prime} \mathbf{w} \mathbf{U} / \mathbf{I}^{\prime} \mathbf{w I}\right)_{t}$ as a criterion of weighting is preferable, since the effect of the weight matrix substantially cancels. It is clear from Table 4, however, that the effect of the off-diagonal parameters in ($\left.\mathbf{U}^{\prime} \mathbf{w U} / \mathbf{I}^{\prime} \mathbf{w I}\right)$ is not negligible, since, while R_{G} is of the same order of magnitude for all camera distances (as is R_{D}), the trends in R_{G} are opposed to those in R_{D}. Δ refined to 0.028

Table 1. Refinements carried out under weighting scheme I
(a) All parameters refined. Badger's rule constraints on $u_{i j}$.
(b) As (a), but $u(\mathrm{Fe}-\mathrm{C})$ and $u(\mathrm{Fe}-\mathrm{O})$ pairs equal.
(c) Bonded $u_{i j}$ fixed (spectroscopic values), non-bonded $u_{i j}$ refined.
(d) Bonded $u_{i j}$ refined, non-bonded $u_{i j}$ fixed (spectroscopic values).
(e) Bonded $u_{i j}$ refined, non-bonded $u_{i j}$ fixed (AHW values).
(f) No shrinkage corrections applied.
(g) Shrinkage factor refined; all shrinkages multiplied by $2 \cdot 48 \pm 0 \cdot 24$.
(h) Geometry calculated on the basis of $r_{g}(0)$.

The estimated standard deviations in parentheses in column (a) apply to all refinements in this Table.

	a	b	c	d	e	f	g	h
Geometrical parameters (\AA)								
$\mathrm{C}-\mathrm{O}$ (mean)	$1 \cdot 145_{2}(0.0019)$	$1 \cdot 145$	$1 \cdot 1449$	$1 \cdot 143_{7}$	$1 \cdot 145_{2}$	$1 \cdot 140_{2}$	$1 \cdot 152{ }_{3}$	
$\mathrm{Fe}-\mathrm{C}$ (mean)	$1.822_{3}(0.0014)$	$1 \cdot 822_{4}$	1.822_{4}	1.8228	1.8239	1.8208 0.032	1.824_{7} 0.015	${ }^{1} .8222_{5}$
Δ	$0.0269\left(0.005_{0}\right)$	$0 \cdot 028{ }_{2}$	0.0285	$0 \cdot 0276$	$0 \cdot 013_{5}$	$0 \cdot 0329$	0.015_{2}	
Bond amplitudes (\AA)								
$u(\mathrm{C}-\mathrm{O})$	$0.024_{9}\left(0.007_{7}\right)$	$0 \cdot 0253$	0.0350**	0.0249	$0 \cdot 0247$			$0 \cdot 025_{4}$
$u[\mathrm{Fe}-\mathrm{C}(1)]$	$0.049_{5}\left(0.003_{4}\right)$	$0 \cdot 0490$	0.0484*	0.0443 0.043	0.0497 0.049	0.0489 0.0474	$0.050{ }_{3}$ 0.0496	0.049^{2} 0.0478
$u[\mathrm{Fe}-\mathrm{C}(2)]$	$0.048_{3}\left(0.003_{4}\right)$	$0 \cdot 049_{0}$	0.0506*	0.043_{2}	$0 \cdot 049_{1}$		${ }^{0.0496}$	
$\mathrm{Fe}-\mathrm{C}(1)$	$1.833_{1}\left(0.002_{5}\right)$	1.833_{7}	1.833_{8}	$1 \cdot 833_{8}$	1.8293	1.8339	$1 \cdot 830_{8}$	1.8350
$\mathrm{Fe}-\mathrm{C}(2)$	$1.806_{2}\left(0.003_{3}\right)$	1.805_{5}	$1 \cdot 805_{3}$	$1 \cdot 806_{2}$	1.815_{8}	1.801_{0}	1.815_{6}	$1 \cdot 803_{8}$
R_{G}	$0 \cdot 1861$	0.1861	$0 \cdot 1865$	0.2099	0.2001	$0 \cdot 1945$	0.1810	0.1855
R_{D}	$0 \cdot 1284$	$0 \cdot 1288$	$0 \cdot 1296$	$0 \cdot 1379$	$0 \cdot 1300$	$0 \cdot 1428$	$0 \cdot 1156$	$0 \cdot 1290$

Table 2. Refinements carried out under various weighting schemes
(a) Scheme II
(b) Scheme III
(c) Scheme IV
(d) 25 cm only (5 non-bonded $u_{i j}$ fixed)
(e) 50 cm only (6 non-bonded $u_{i j}$ fixed)
(f) Refinements of Almenningen, Haaland \& Wahl.

	a	b	c
$\mathrm{C}-\mathrm{O}$ (mean)	$1 \cdot 143_{1}\left(0.001_{3}\right)$	$1 \cdot 144_{6}\left(0.001_{4}\right)$	$1.1437(0.0015)$
$\mathrm{Fe}-\mathrm{C}$ (mean)	$1.823_{7}\left(0.001{ }_{0}\right)$	$1.823_{3}\left(0.001_{1}\right)$	$1.8237\left(0.001_{1}\right)$
4	$0.022_{4}\left(0.004_{6}\right)$	$0.026_{8}\left(0.004_{7}\right)$	$0.027_{5}\left(0.004_{6}\right)$
$\mathrm{Fe}-\mathrm{C}(1)$	$1.8327_{7}\left(0.002{ }_{3}\right.$)	$1.834_{1}(0.0023)$	$1.8347\left(0.002{ }_{3}\right.$)
$\mathrm{Fe}-\mathrm{C}(2)$	$1.810_{3}(0.0029)$	1.8073 (0.0029	$1.8072(0.0029)$
$u(\mathrm{C}-\mathrm{O})_{\text {mean }}$	$0.026_{8}\left(0.005_{2}\right)$	$0.025_{6}\left(0.005_{8}\right)$	$0.027{ }_{4}(0.0057)$
$u[\mathrm{Fe}-\mathrm{C}(1)$]	$0.052_{2}(0.0024)$	$0.050_{8}(0.0027)$	$0.052_{2}\left(0.002{ }_{8}\right)$
$u[\mathrm{Fe}-\mathrm{C}(2)]$	$0.051_{1}(0.0024)$	0.0496 (0.002_{6})	$0.051_{0}(0.0027)$
R_{G}	$0 \cdot 1801$	$0 \cdot 1836$	$0 \cdot 1830$
R_{D}	$0 \cdot 1385$	$0 \cdot 1337$	0.1200
$W_{t}(100 \mathrm{~cm})$	0.25	0.63	5.29
$W_{t}(50 \mathrm{~cm})$	$0 \cdot 50$	0.66	0.37
$W_{t}(25 \mathrm{~cm})$	$1 \cdot 00$	1.00	$1 \cdot 00$
	d	e	f
	$1.138{ }_{6}\left(0.001{ }_{6}\right)$	$1 \cdot 1479\left(0.003_{0}\right)$	1.147 (0.002)
	$1.827_{5}\left(0.001_{3}\right)$	$1.8189\left(0.002_{4}\right)$	1.827 (0.003)
	$0.017_{1}(0.0105)$	$0.024_{0}(0.0074)$	0.012 (0.006)
	$1.8343^{(0.0046}$)	1.8285 (0.0039)	1.832 (0.005)
	$1.817_{2}\left(0.006_{2}\right)$	1.8045 (0.0049$)$	1.820 (0.006)
	$0.030_{5}\left(0.0055_{0}\right)$	$0.040_{1}\left(0.019_{2}\right)$	0.0327 (0.0005)
	$0.056_{4}\left(0.002{ }_{7}\right.$)	0.0564^{*}	$0.057(0.003)$
	$0.055_{6}\left(0.002{ }_{6}\right)$	0.0556 *	
	$0 \cdot 1480$	$0 \cdot 1910$	
	0.1442	$0 \cdot 1198$	

Table 3. Dependent distances and non-bonded amplitudes (\AA)
(a) Scheme I distances and standard deviations; refinement as in Table 1, col. (a).
(b) Scheme I non-bonded $u_{i j}$; refinement as in Table 1, col. (a).
(c) Scheme II non-bonded $u_{i j}$; refinement as in Table 2, col (a).
(d) Scheme III non-bonded $u_{i j}$; refinement as in Table 2, col. (b).
(e) Scheme IV non-bonded $u_{i j}$; refinement as in Table 2, col. (c).
(f) Refinement of Almenningen, Haaland \& Wahl (1968).
(g) Calculated (spectroscopic) $u_{i j}$ at $298^{\circ} \mathrm{K}$ (Brunvoll, 1967).

	a	b	c	d
$\mathrm{Fe} \cdots \cdot \mathrm{O}(1)$	2.9709 $\left(0 \cdot 002_{4}\right)$	0.055 (0.003)	0.057 (0.002)	0.056 (0.002)
$\mathrm{Fe} \cdot \cdots \cdot \mathrm{O}(2)$	$2 \cdot 947_{1}\left(0.003_{1}\right)$	0.054 (0.003)	0.056 (0.002)	0.055 (0.002)
$\mathrm{C}(1) \cdots \mathrm{C}\left(1^{\prime}\right)$	$3 \cdot 1679\left(0.004_{1}\right)$	$0 \cdot 179$ (0.032)	$0 \cdot 162$ (0.027)	0.194 (0.034)
C(1) $\cdot \cdot \mathrm{C}(2)$	$2 \cdot 5698(0.0019)$	$0 \cdot 103$ (0.007)	0.093 (0.005)	0.097 (0.005)
$\mathrm{C}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	$4 \cdot 1898\left(0 \cdot 003_{9}\right)$	$0 \cdot 153$ (0.010)	$0 \cdot 159(0.009)$	$0 \cdot 152(0.010)$
$\mathrm{C}(1) \cdots \mathrm{O}(2)$	$3.466_{5}(0 \cdot 0019)$.	$0 \cdot 171(0.005)$	$0 \cdot 168(0 \cdot 004)$	$0 \cdot 169$ (0.005)
$\mathrm{C}(2) \cdots \mathrm{O}(1)$	$3.472_{6}\left(0.001_{4}\right)$	$0 \cdot 171(0.005)$	$0 \cdot 168(0.004)$	0.169 (0.005)
$\mathrm{O}(1) \cdots \mathrm{O}(1)$	$5 \cdot 132{ }_{3}\left(0 \cdot 004_{2}\right)$	0.171 (0.011)	$0 \cdot 181(0.011)$	0.176 (0.010)
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$4 \cdot 1779(0.0019)$	$0.321(0.030)$	$0.301(0.023)$	0.339 (0.029)
$\mathrm{C}(2) \cdots \mathrm{C}\left(2^{\prime}\right)$	$3 \cdot 593_{1}\left(0 \cdot 006_{2}\right)$	$0.30 \quad(0.21)$	0.26 (0.22)	$0.45 \quad(0.16)$
$\mathrm{C}(2) \cdots \mathrm{O}\left(2^{\prime}\right)$	$4.729_{1}(0.0060)$	0.057 (0.013)	$0.071(0.010)$	0.068 (0.011)
$\mathrm{O}(2) \cdots \mathrm{O}\left(2^{\prime}\right)$	$5 \cdot 861_{5}\left(0.006_{2}\right)$	0.049 (0.018)	$0.067(0.013)$	$0.060(0.014)$
-		e	f	g
		0.057 (0.002)	$0.055(0.008)$	0.0503
		0.055 (0.002)	0.055 (0.008)	$0 \cdot 0525$
		$0 \cdot 127(0.025)$	$0 \cdot 112(0.015)$	0.1053
		0.095 (0.006)	$0 \cdot 123$ (0.005)	$0 \cdot 1490$
		$0 \cdot 164$ (0.012)	$0 \cdot 149$ (0.013)	0.1284
		0.159 (0.005)	$0 \cdot 152(0 \cdot 010)$	$0 \cdot 1795$
		$0 \cdot 159$ (0.005)	$0 \cdot 152(0.010)$	$0 \cdot 1818$
		0.192 (0.011)	$0.231(0.012)$	$0 \cdot 1718$
		$0.294(0.024)$	0.270 (0.026)	$0 \cdot 2451$
		0.27 (0.12)	0.20 (0.10)	0.0649
		0.073 (0.011)	$0.068(0.010)$	0.0663
		0.066 (0.015)	0.093 (0.027)	0.0677

$\pm 0.005 \AA$, virtually the same value as that obtained in weighting scheme I.

Refinement on single intensity curves

As an extreme case of varying the W_{t}, refinements were carried out on the 25 cm data alone ($s=8.0$ to $30.0 \AA^{-1}$) and also on the 50 cm data alone ($s=1.7$ to $13 \cdot 5 \AA^{-1}$). With these smaller amounts of data several of the amplitudes were not well defined, and were therefore fixed at values representative of those obtained in the previous refinements. The 25 cm results [Table 2, col. (d)] with 5 non-bonded amplitudes fixed provide a relatively small value of $\Delta, 0.017 \pm 0.011 \AA$, and a mean C-O bond length of $1 \cdot 139 \pm 0.002 \AA$ which is considerably shorter than the corresponding values obtained in all the refinements on the full range of data.
Refinement on the 50 cm data with 6 non-bonded amplitudes and the two ($\mathrm{Fe}-\mathrm{C}$) bonded amplitudes fixed gave values for the bonded distance parameters [Table 2, col. (e)] in reasonable agreement with those obtained under weighting scheme I , and $\Delta=0.024$ $\pm 0.007 \AA$. In the 25 cm case the bonded amplitude values were markedly larger than those obtained in refinements on the whole data available. This is in accord with general experience (Hedberg \& Iwasaki, 1964) that use of outer data alone often gives larger values for some of the more important amplitudes. Inclusion of the 100 cm data always yielded a (C-O)
amplitude which is unreasonably small (though with a large estimated standard deviation). Refinement on either 25 cm data alone or 50 cm data alone gave values closer to the expected $0.035 \AA$.

Discussion

In our refinements carried out on the full range of data, almost all of the different values obtained for Δ fell into the range $0.022 \leq \Delta \leq 0.030 \AA$. The only exceptions to this are (i) the refinements where shrinkage corrections were omitted from the geometrical model, $\Delta=0.033 \AA$, (ii) when shrinkage was refined, $\Delta=$ $0.015 \AA$ and (iii) the refinement with all non-bonded amplitudes fixed at AHW's values, $\Delta=0.014 \AA$. Alteration of the weighting scheme had little effect on the value of Δ, and the constraint of the $\mathrm{Fe}-\mathrm{C}$ amplitudes such that the equatorial bonds had the smaller amplitude [Table 1, col. (c)] had no effect either. Significance tests (carried out under weighting scheme I only) lead to 99.5% confidence limits of $0.013 \leq \Delta \leq$ $0.042 \AA$, and the refinements under the other weighting schemes give us no reason to doubt these limits. If we take our best value of Δ as $0.027 \pm 0.005 \AA$, the difference between this and AHW's $0.012 \pm 0.006 \AA$ is $0.015 \pm 0.008 \AA$, in the 'not significant' range (Cruickshank, 1949). We find further that when our outer data are emphasized the values of Δ obtained decrease

Table 4. Least squares correlation matrix multiplied by 1000
Elements are $1000 \varrho_{i j} ; \varrho_{i j}=M_{i j} / \sigma_{i} \sigma_{j}$ where \mathbf{M} is the variance-covariance matrix.

$$
U_{1}=U(\mathrm{C}-\mathrm{O}), U_{2}=U(\mathrm{Fe}-\mathrm{C}), U_{4}=U(\mathrm{Fe} \cdots \mathrm{O}) .
$$

U_{6} to U_{15} are the remaining non-bonded amplitudes in the order of table 3. U_{3}, U_{5} and U_{10} are not included since each of these amplitudes is refined as a function of the preceding amplitude.

C-O	$\mathrm{Fe}-\mathrm{C}$		U_{1}	U_{2}	U_{4}	U_{6}	U_{7}	U_{8}	U_{9}	U_{1}	U_{12}	U_{13}	U_{14}	U_{15}	K_{1}	K_{2}	K_{3}
1000	-631	11	-110	-73	-8	406	81	-22	-41	-56	11	223	10	-20	-71	-77	94
-631	1000	74	19	-53	-13	17	112	1	-24	-4	30	96	-18	5	29	-67	74
11	74	1000	-4	-209	-180	327	19	-404	418		31	109	97	1	-6	-22	
-110	19	-4	1000	270	311	-55	18	80	72	50	-62	-96			20	316	25
	-53	-209	270	1000	529	-114	-37	228	19		-172	-177	35	71	150	56	657
-8	-13	-180	311	529	1000	125	54	175	66	45	-6	-13	60	80	12	5	711
406	17	327	-55	-114	125	1000	16	-234	447	-105	41	523	91		23	-71	-55
81	112	19	18	-37	54	16	00		29	-23	-23	-17		-2	-45	-142	
-22		-404		228	175	-234	6	1000	-415	129	-675	-203	-240		58	23	166
-41	-24	418	72	19	66	347	29	-415	1000	46	206	-172	96	21	70	7	151
-56	-48	${ }^{2}$		84	45	-105	-23	129	46	1000	-228	-220	151	81	63	134	97
115	30	315	-62	-172	-63	410	-23	-675	206	-228	1000	684	270	12	-101	-194	-107
223		109	-96	-177	-13	523	-17	-203	-172	-220	684	1000	125		-188	-258	-150
	-18	97	38	35	60	91		-240	96	151	270	125	1000	-38	-25	12	91
-20		21	50	71	8		-2	12	21	-81	12		-38	1000	30	80	04
-				150	123		-45	58	70	63	-101	-188	-25	30	1000	168	5
	-67	-22	316	566	518	-71	-142	234	72	134		-258	12	80	168	1000	534
-194		-9		66	711	-55		2	151	79	-107	-		104	156	534	100

Table 5. Analysis of variance

Distance	$\mathbf{U}^{\prime} \mathbf{w U}$	$\mathbf{U}^{\prime} \mathbf{w U} / \mathbf{I} \mathbf{\prime} \mathbf{w I}$	N	$\mathbf{U}^{\prime} \mathbf{w U} / N$	R_{G}	R_{J},	Correlation
100 cm	1.3460	0.04111	166	0.00811	0.2027	0.1146	0.50000
50 cm	18.6593	0.03952	189	0.09873	0.1988	0.1322	0.50000
25 cm	9.2110	0.02638	151	0.06100	0.1624	0.1576	0.49996

[Table 2, columns $(a),(d),(c)]$. AHW refined on a single composite intensity curve extending from $s=1$ to $48 \AA^{-1}$. This procedure in effect gives higher weight to the outer data than do our refinements, so that part of the change in Δ is presumably caused by differences in the refinement procedure and in the range of s experimentally studied. There appears to be a systematic difference between $\mathrm{C}-\mathrm{O}$ (mean) and between $\mathrm{Fe}-\mathrm{C}$ (mean) values in the two sets of results, amounting to about 2 parts per thousand. This is of the order of the combined uncertainties in the accelerating voltages of the instruments. When possible systematic errors are included, we obtain $\mathrm{C}-\mathrm{O}($ mean $)=1 \cdot 145 \pm 0.003 \AA$, $\mathrm{Fe}-\mathrm{C}($ mean $)=1.822 \pm 0.003 \AA$.

In all other respects the correspondence between the present results and those of AHW is very good indeed. AHW obtain a value of $u(\mathrm{C}-\mathrm{O})$ which is very much better defined and closer to the spectroscopic value, a consequence of their more extensive data at high s. The agreement for the other amplitudes is satisfactory (Tables 1, 2 and 3), and both sets of results show reasonable correspondence with the calculated amplitudes of Brunvoll (1967). The cases where agreement is least good and where our values of the amplitudes are most strongly dependent on the weighting scheme are (a) $\mathrm{C}(1) \cdots \mathrm{C}\left(1^{\prime}\right), \mathrm{C}(2) \cdots \mathrm{C}\left(2^{\prime}\right)$ and $\mathrm{O}(2) \cdots \mathrm{O}\left(2^{\prime}\right)$; these all give rise to weak peaks in $P(r) / r$, the former two being also overlapped by the strong $\mathrm{Fe} \cdots \mathrm{O}(1)$, $\mathrm{Fe} \cdots \mathrm{O}(2), \mathrm{C}(1) \cdots \mathrm{O}(2)$ and $\mathrm{C}(2) \cdots \mathrm{O}(1)$ peaks, (b) $O(1) \cdots O(2)$, where the calculated amplitude is very large $(0.245 \AA)$. The detailed agreement between the present work and the Norwegian results is particularly gratifying in view of the complexity of this electron diffraction problem and the large number of parameters refined.

A direct comparison with the results of Davis \& Hanson (1965, 1967) is less easy to make, since these authors provide no information in either of their communications concerning the values of the non-bonded amplitudes and whether these were refined or not. Since we have shown that when the non-bonded amplitudes are fixed at other than our refined values [Table 1, col. (e)] Δ may change appreciably, this point is of critical importance. We must presume that Davis \& Hanson did not include shrinkage corrections in their calculations, although they make no specific comment on this either. Without shrinkage [Table 1, col. $(f)]$ we obtain $\Delta=0.033 \pm 0.005 \AA$, which is not inconsistent with the $\Delta=0.049 \pm 0.020 \AA$ obtained by Davis \& Hanson (1967). Their $\mathrm{Fe}-\mathrm{C}\left(\right.$ mean) of $1 \cdot 823 \pm 0.001{ }_{4} \AA$ is in accordance with our $1.822 \pm 0.003 \AA$ and AHW's $1.827 \pm 0.003 \AA$. For $\mathrm{C}-\mathrm{O}$ (mean) they obtain 1.136 $\pm 0.001_{5} \AA$, while we find $1 \cdot 145 \pm 0.003 \AA$ and AHW $1 \cdot 147 \pm 0.002 \AA$. Part of this discrepancy may be due to their omission of the large shrinkage in the $\mathrm{Fe} \cdots \mathrm{O}$ distances, calculated as $0.0074 \AA$ for $\mathrm{Fe} \cdots \mathrm{O}(1)$ and $0.0044 \AA$ for $\mathrm{Fe} \cdots \mathrm{O}(2)$ at $25^{\circ} \mathrm{C}$: the omission of shrinkage [Table 1, col. (f)] causes our $\mathrm{Fe}-\mathrm{C}($ mean $)$ to fall to $1.821 \AA$ and $\mathrm{C}-\mathrm{O}($ mean $)$ to $1.140 \AA$.

While Donohue \& Caron $(1966,1967)$ have made some pertinent comments regarding the refinement of bonded and non-bonded amplitudes, we have shown that after all amplitudes are successfully refined there remains a very high probability that the equatorial $\mathrm{Fe}-\mathrm{C}$ bond length in iron pentacarbonyl is longer than the axial bond length by a small amount. There seems no good reason for choosing between our best value [Table 1, col. (a)] and that of AHW, which are in essential agreement. It seems very unlikely that the true value of Δ lies outside the range $0.038 \AA$ to $0.0 \AA$, i.e. two standard deviations outside the respective values. If we take these limits as the 99% confidence interval, we conclude that the best value of Δ is $0.019 \pm 0.008 \AA$.

The data (Hanson, 1962) used in both crystal structure refinements were collected from 3 zones each at a different temperature and they are not extensive for a monoclinic space group (317 observed reflexions). With data of higher quality the standard deviations obtained in these refinements could probably be improved. At present it can only be said that the mean Fe-C bond length in the solid, $1 \cdot 79_{5} \pm 0.02 \AA$, is compatible with the gas-phase results, as Donohue \& Caron (1967) have pointed out.

We are grateful to Dr A. Haaland for a communication of results prior to publication, Dr B.J.Aylett for the sample of $\mathrm{Fe}(\mathrm{CO})_{s}, \mathrm{Mr}$ J. Dawber for technical assistance and the Science Research Council for a maintenance grant for one of us (P.M.P.).

References

Almenningen, A., Haaland, A. \& Wahl, K. (1968). Private communication.
Bartell, L. S. (1955). J. Chem. Phys. 23, 1219.
bartell, l. S. \& Carroll, b. L. (1965). J. Chem. Phys. 42, 1135.
Beagley, B., Clark, A. H. \& Hewitt, T. G. (1968). J. Chem. Soc. A, p. 658.
Beagley, B., Robiette, A. G. \& Sheldrick, G. M. (1968a). J. Chem. Soc. A, p. 3002.

Beagley, B., Robiette, A. G. \& Sheldrick, G. M. (1968b). J. Chem. Soc. B, p. 3006.

Brunvoll, J. (1967). Acta Chem. Scand. 21, 1390.
Cruckshank, D. W. J. (1949). Acta Cryst. 2, 65.
Cox, H. L. \& Bonham, R. A. (1967). J. Chem. Phys. 47, 2599.

Davis, M. I. \& Hanson, H. P. (1965). J. Phys. Chem. 69, 3405.

Davis, M. I. \& Hanson, H. P. (1967). J. Phys. Chem. 71, 775.

Donohue, J. \& Caron, A. (1964). Acta Cryst. 17, 663. Donohue, J. \& Caron, A. (1966). J. Phys. Chem. 70, 603. Donohue, J. \& Caron, A. (1967). J. Phys. Chem. 71, 777. Hamliton, W. C. (1965). Acta Cryst. 18, 502.
Hansen, K. W. \& bartell, L. S. (1965). Inorg. Chem. 4, 1775.

Hanson, A. W. (1962). Acta Cryst. 15, 930.
Hedberg, K. \& Iwasaki, M. (1964). Acta Cryst. 17, 529. Murata, Y. \& Morino, Y. (1966). Acta Cryst. 20, 605.

